Excellgen

How to generate an AI model from https://aiprediction.us API and use it for option trading

ByPaul
Published

Financial Options Analysis System - Implementation Guide

This guide will help you implement and utilize the Options Analysis System for analyzing SPX index and options data. The system is designed to handle time series data, extract meaningful features, train predictive models, and provide real-time analysis.

1. Setup and Configuration

Installation Requirements

Install the required dependencies:


pip install pandas numpy matplotlib seaborn scikit-learn tensorflow joblib requests

Configuration Options

The system accepts various configuration parameters:


config = {

    'lookback_window': 20,     # Number of historical data points to use for prediction

    'feature_window': 10,      # Window size for calculating features (e.g., RSI)

    'prediction_horizon': 5,   # How far ahead to predict (in time intervals)

    'model_type': 'lstm',      # Model architecture ('lstm', 'gru', 'dual_input')

    'batch_size': 64,          # Batch size for training

    'epochs': 100,             # Maximum training epochs

    'learning_rate': 0.001,    # Learning rate for Adam optimizer

    'early_stopping': 10,      # Patience for early stopping

    'scaler_path': 'scalers/', # Directory to save feature scalers

    'model_path': 'models/',   # Directory to save trained models

    'api_url': 'https://your-api-endpoint.com/v53a',  # Your API endpoint

    'api_key': 'your_api_key', # Your API key if required

    'indicators': [            # Technical indicators to calculate

        'ma', 'rsi', 'macd', 'bollinger', 'put_call_ratio', 'volatility'

    ]

}

2. Data Processing Pipeline

Real-time Data Flow

The system is designed to process data in the following sequence:

  1. Data Acquisition: Fetch data from your API endpoint every minute

  2. Data Preprocessing: Clean and structure the raw data

  3. Feature Engineering: Calculate technical indicators and derivations

  4. Model Prediction: Use pre-trained model to make price predictions

  5. Signal Generation: Generate trading signals based on predictions

  6. Analysis Reporting: Create comprehensive market analysis reports

API Integration

Configure the system to connect to your data source:


analysis_system = OptionsAnalysisSystem({

    'api_url': 'https://your-api-endpoint.com/v53a',

    'api_key': 'your_api_key'

})

# Fetch latest data

data = analysis_system.fetch_data_from_api()

3. Feature Engineering

The system calculates various technical indicators from your time series data:

  1. Moving Averages: Short and long-term trend detection

  2. RSI: Overbought/oversold conditions detection

  3. MACD: Trend detection and momentum analysis

  4. Bollinger Bands: Volatility analysis and price level evaluation

  5. Put/Call Ratios: Options market sentiment indicators

  6. Volatility Metrics: Market volatility measurements

  7. Price-Option Correlations: Relationship between index and option prices

  8. Divergence Signals: Discrepancies between price and options activity

These features serve as inputs to the predictive model and are also used for market regime analysis.

4. Model Training and Prediction

Training Process

To train a predictive model on historical data:


# Load historical data

historical_data = pd.read_csv('historical_data.csv')

# Preprocess and extract features

processed_data = analysis_system.preprocess_data(historical_data)

features_df = analysis_system.engineer_features(processed_data)

# Prepare training data

X_train, X_test, y_train, y_test, feature_cols = analysis_system.prepare_model_data(

    features_df, target_col='sp'

)

# Train model

model = analysis_system.train_model(

    X_train, y_train, X_test, y_test, model_name='spx_predictor'

)

# Save model and scalers

analysis_system.save_scalers('spx_predictor')

Making Predictions

To make predictions using a trained model:


# Load a pre-trained model

analysis_system.load_model('spx_predictor')

analysis_system.load_scalers('spx_predictor')

# Make prediction for latest data

prediction = analysis_system.predict(data=latest_data, target_col='sp')

# Make predictions for multiple horizons

predictions = analysis_system.predict_multiple_horizons(

    horizons=[1, 5, 10, 20], target_col='sp'

)

5. Real-time Market Analysis

Single Analysis

Generate a comprehensive analysis report:


# Generate a complete analysis

report = analysis_system.generate_comprehensive_report()

# Key components in the report:

# - current_price: Latest index price

# - predictions: Price predictions for different horizons

# - trading_signals: Buy/Sell/Hold signals based on predictions

# - options_sentiment: Analysis of put/call ratios and option activity

# - market_regime: Technical analysis of current market conditions

Continuous Monitoring

Set up continuous monitoring and analysis:


# Run analysis every 60 seconds

analysis_system.run_continuous_analysis(

    interval=60,                    # Time between analyses (seconds)

    save_path='./analysis_reports'  # Optional path to save visualizations

)

6. Visualization and Reporting

The system provides rich visualizations for market analysis:


# Generate and display/save visualization

analysis_system.visualize_analysis(

    report=latest_report,          # Analysis report to visualize

    save_path='./latest_report.png' # Optional path to save the image

)

The visualization includes:

  • Price charts with predictions

  • Options sentiment indicators

  • Technical indicator analysis

  • Trading signals summary

  • Historical put/call ratios

  • Correlation heatmaps

7. Integration with Trading Systems

The analysis output can be integrated with automated trading systems:


# Get trading signals

report = analysis_system.generate_comprehensive_report()

signals = report['trading_signals']

# Example of acting on signals

for horizon, signal_data in signals.items():

    if horizon == '5_steps':  # 5-minute horizon

        if signal_data['signal'] == 'BUY':

            # Execute buy order

            pass

        elif signal_data['signal'] == 'SELL':

            # Execute sell order

            pass

8. Customization and Extension

Adding New Indicators

You can extend the system by adding custom indicators:


# Extend the engineer_features method with your custom indicators

def custom_engineer_features(self, df):

    # Call the original method

    features_df = self.engineer_features(df)

    

    # Add your custom indicators

    features_df['custom_indicator'] = calculate_custom_indicator(df)

    

    return features_df

# Monkey patch the method

OptionsAnalysisSystem.engineer_features = custom_engineer_features

Custom Model Architectures

You can implement custom model architectures:


# Extend the build_model method with your custom architecture

def custom_build_model(self, input_shape, output_shape=1):

    # Check if custom model type is requested

    if self.config['model_type'] == 'custom':

        # Implement your custom model

        from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten

        model = Sequential([

            Conv1D(64, 3, activation='relu', input_shape=input_shape),

            MaxPooling1D(2),

            Flatten(),

            Dense(32, activation='relu'),

            Dense(output_shape)

        ])

        

        # Compile the model

        optimizer = Adam(learning_rate=self.config['learning_rate'])

        model.compile(optimizer=optimizer, loss='mse', metrics=['mae'])

        

        return model

    else:

        # Call the original method for other model types

        return self._original_build_model(input_shape, output_shape)

# Save the original method

OptionsAnalysisSystem._original_build_model = OptionsAnalysisSystem.build_model

# Monkey patch the method

OptionsAnalysisSystem.build_model = custom_build_model

9. Best Practices

  1. Data Quality: Ensure your API provides clean and consistent data

  2. Model Retraining: Retrain models periodically (e.g., weekly) to adapt to changing market conditions

  3. Validation: Always validate predictions against actual market movements

  4. Risk Management: Implement position sizing and risk management rules when using signals for trading

  5. Multiple Timeframes: Consider analyzing multiple timeframes for more robust signals

  6. Feature Importance: Periodically analyze which features contribute most to prediction accuracy

  7. Ensemble Approach: Consider using multiple model types and combining their predictions

10. Troubleshooting

Common issues and solutions:

  1. Missing Data: Check your API response structure and ensure the preprocess_data method handles it correctly

  2. Model Performance: Poor predictions may indicate need for retraining or adjusting lookback window

  3. API Rate Limiting: Adjust your continuous analysis interval to avoid hitting API rate limits

  4. GPU Utilization: Set environment variable TF_FORCE_GPU_ALLOW_GROWTH=true for better GPU memory management

  5. Memory Issues: For large datasets, consider batch processing or downsampling techniques